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Abstract. The discrete binary fragmentation equation is solved explicitly far a model where 
tnenetrateoibreakupoiaparlicie oishek, o,,equals(k - lj/(k+l),andthedaughter-ri~e 
distribution b,lx equals 2 / ( k - 1 ) .  This system is closely related to a model of polymer 
degradation considered by Simha, in which ax = I and b,,* is as above. In  the continuum 
limit, both of these models go over to a continuous fragmentation model in which all 
particles break with an equal rate, a ( x )  = I ,  and the daughter-size distribution is uniform, 
b(yl x) = Z/x, which is at the borderline of the shattering transition. 

1. Introduction 

The general kinetic equation for discrete fragmentation is given by 

where ck(f)  is the concentration of k-size panicles, or k-mers, at time t, ak is the net 
rate of breakup of a k-mer, and bilk gives the average number of i-mers produced 
upon the breakup of a k-mer. Conservation of mass implies that bilk satisfies 

k-1 

1 ibilk = k. (2) 
i = ,  

When the breakup process is binary, then bilk = bk-ilk. and the number of particles 
produced in a fragmentation process is always equal two: 1::: bilk=2. In this case, 
(1) can also be written as [l]: 
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For binary breakup, b(xly)= b(y-xly) implying 
written as 

b(x1y) d x = 2 ,  and (4) may be 

where F(x ,  y) = a(x+y)b(xlx+y)/2.  
The fragmentation equations were first solved for the equi-reactivity model, ak = 

k-1, bilk=2/(k-1) (or F,=l )  in the discrete form, and a(x)=x,  b(ylx)=2/x (or 
F(x ,y)=  1) in the continuous form [1,2]. These models correspond to independent 
random breaking of the bonds in a linear polymer system. Explicit solutions have been 
found for a small number of other models. Simha [ 11 has considered a monomer- 
breakoff model, in which the resulting kinetic equation is closely related to the 
Becker-Doring equation of nucleation kinetics (see [3] for some recent work). Bak 
and Bak [4] have given the solution for a continuous model where the particles break 
only exactly in the centre. Some other discrete fragmentation solutions are given in 
[8,9], and explicit solutions for the continuum equation are summarized in [IO-151. 

The discrete fragmentation equation ( I )  can be solved formally by an iterative 
process, as shown by Simha [2], Jellinek and White [SI, Baulauff and Wolf [6],  and 
Basedow el a/ [7]. Using this formal solution (which we review below), it is not difficult 
to write computer programs to determine the ck(t) numerically. However, there is still 
interest in finding analytical solutions. These solutions allow one to understand the 
structure of solutions to (I) ,  to analytically investigate scaling and asymptotic 
behaviour, and to investigate the violation of mass conservation. With solutions to the 
discrete equation, one can illustrate the transition to the continuum limit explicitly. 
Of course, there is also a purely mathematical interest in finding solutions to an equation 
such as ( I ) .  

In this paper, we consider a discrete model of fragmentation first introduced by 
Simha some fifty years ago [I]. While he found an explicit solution to this model, that 
solution involves coefficients written in terms of multiple summations that are unwieldy 
for large systems. Here, we make a small modification to the breakup rate in Simha’s 
model and find an explicit solution in a compact form. In the continuum limit, both 
Simha’s model and our model are at the borderline of the shattering transition, in 
which a finite fraction of the mass breaks up to zero-size particles [ 13,161. Our solution 
also implies an interesting formal identity for a certain multiple summation; this identity 
is proven directly in appendix 1. 

2. Simha’s model 

Simha [l] considered the model defined by 

0 k = l  
k > l  

bilk =2/(k-1) 

(7) 

which represents a system of binary fragmentation with F,= l / ( i+ j - l ) .  Here all 
particles (polymers) break with equal probability, since ak =constant. (Contrast this 
to the common equi-reactivity model, where all bonds within a cluster break with equal 
probability.) When a particle breaks, products of all possible sizes are equally probable 
(as in the equi-reactivity model) since bilk is independent of i. 
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Ageneral series solution of (1) for a monodisperse initial condition of particles of 

k = n  

size n, ck(0)  = b, can be found by substituting the following series into (1): 

yielding B c ’  = a.bkl. and 
“-1 E t ) + ]  = ( a .  - a k ) B c ’ +  1 ajbkljB~.::’ (9) 

j = k + l  

for i > 0. Once the solution for monodisperse initial condition is found, the solution 
for a general initial condition follows by linear combination. Equations (S), (9) represent 
one form of the general solution to (1). 

For (7), this procedure yields [I]  

k = n  

with the C c ) = 2 P B c )  given by 

1 “-1 1 C(”)-- 
n - 1 j = k + l  J - 1 I -  X Z  - 

... 
1 n - l  1 “-1 1 “-1 1 

CL’=- E -... e - c -  n -  1 j , = k + l  J ; -  1 j ,=j ,+l  J , - 1  j z=j l+ l  J 2 -  1 
and CL’=O for i >  n-k. Equations (10)-(11) are the result found by Simha, who 
used the notation Si!;’’ = C c ’ / ( n  - 1). Simha also derived the recurrence formula (in 
our notation) C c ’ - C ~ ~ , , ~ = - C ~ ~ ~ ~ / ( ~ - l ) ,  wrote C!&) and Cg’ in terms of the JI 
function, and studied the generai asymptotic behaviour ofihe Cc) tor iarge k. i-iowever, 
the explicit evaluation of the C c )  is impractical for iarge n, and no simpler expression 
for c k ( t )  was found. 

3. Solution of a related model 

We consider a system described by the rates 

ak = ( k  - l ) / (k+ 1) b,lk = 2/(k- 1 
This is also a binary model, with F, = 1/(  i + j +  1). The breakup products are uniformly 
distributed as in (7) ,  but the rate of breakup, ak ,  is weakly dependent upon k, 
approaching 1 for k large, and decreasing to 0 as k decreases to 1. Models (like this 
one) where aii the ax are distinci (non-degenetaie) may ‘re soived for monodisperse 
initial conditions cX(0)=  SXn by assuming a series solution of the form [I, 5-71 

c X ( t ) =  1 A‘,:’eC*’ ( k <  i s n )  (13) 
i = k  
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where A'.".'= 1 .  Substituting (13) into (l) ,  we find that the A!;' satisfy the recurrence 
relations 

The AC) form a triangular matrix, non-zero for ks is n. These recurrence formulae 
are applied in the following order: first k = n - 1, i = n, n - 1 ,  then k = n -2 ,  i = n, 
n - 1 ,  n-2 ,  and so on. Equations (13)-(14) give a second form of a general solution 

By programming (14) on a computer and examining the resulting A C ' ,  we have 
shown previously that expressions for these coefficients can often be found by inspection 
[9]. Carrying out this procedure for this model, we find: 

to (1).  

Note that the binomial coefficient above can also be written (;)(I) = (;)(::[). Equation 
(15) represents a solution to (12) in a compact, explicit form. This result will be verified 
below. 

First we show that this solution can be written in a form very similar to (lo),  by 
substituting e-"""/"+" - - I  2 l / ( i+ l )  . in (15) and expanding the second exponential -e e 
of the latter expression as a power series in (21). This procedure yields 

where 

and where H',: = 1, and H',") = 0 for k < n. We have found that these HC' can also 
be written in a form analogous to Simha's coefficients (11): 

The equivalence of (17) and (18) is proven in appendix 1 .  Note that (18) does not 
follow directly from the series solution (8), (9). In the form of (16)-(18), the solution 
to our model can be seen to be very similar to Simha's solution to (7) given by (lo), 
( 1 1 ) .  For Simha's model, we have not been able to find a solution in a compact form 
similar to (15). 

4. Calculation of moments 

The moments of the distribution are defined by 

M{(f)= k ' c k ( f ) .  
k - I  
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For our model, it is convenient to first calculate the Bernoulli moments [17]: 

The ch follow from the pi simply by 

Comparing (21) to (15), one sees immediately that 

~.~ for our ._~ ~ model; ~ ~ ~~ and ~~~~~ thus 

MI = P I  = n 

M2 = Zp,+p, = n ( n  - 1)  e-"'+ n (23) 

M, =6/3,+6f12+/3, = n ( n  - l ) (n  -2)  e - " 2 + 3 n ( n  - 1) 

The coefficients in the relation between the M, and the pi are given by the Stirling 
numbers [17]. The zeroth moment, which gives the total number of particles, follows 
by summing (15): 

= (-l)i-'/3[. (24) 
i = l  

This result also follows directly from (21) by setting k = 0, using that co = 0 and Po = MO.  
As t goes from 0 to 00, the moments evolve from M;(O) = n i  to M.(m) = n, reflecting 
the transformation of the system from a monodisperse distribution of size n to a 
monodisperse distribution of unit size (the final state). 

1°C ILIUIIICIIIS can aisu " C  U C l l V C U  usmg LllC gcrrcrarrrlg IUIIGIIUII H ( L ,  r ,  Urllllr" oy -. -.- -1.. L ^  A--:..-> ... :-- .L̂  ^^_^_^. :-_ P ..--. :-.. -,. .\ _I.c__> L ~ .  

m 
= (z - l ) ;&(t ) .  

i = 0  

Inserting (15) into (25a),  we find, after some algebra, 

This implies directly that the p, are given by (22) and (24), by virtue of (256). 
That the Bernoulli moments have such a simple form as (22) suggests that they 

might satisfya simpleclosed equation. Indeed, multiplying ( I ) ,  (12) by (L) andsumming 
over k from i to n, we find that the p ,  satisfy 

dp ,  i - 1  
dt  i + l  P> - 
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which implies (221, since P d O )  = (3. The derivation of (27) is given in appendix 2. 
Now, we have shown that (22) in turn implies (15). Thus, (27) provides a direct proof 
of our result (15). 

5. The continuum limit 

These results may be compared with the corresponding continuum problem, defined 
by a(x)  = 1 and b(ylx) =2 /x  [or F(x,y)  = I / (x+y) l .  In this case, (4) becomes simply 

Making use of a power series much like (8). one can find the solution fora monodisperse 
initial condition c(x, 0) = S(x - U) [S, 13,161: - ( 2 t ) '  

i - ,  I !  
c(x,f)=e-'S(x-u)+e-' 1 -Di(x,u) 

where 

That is, 

where I , ( z )  is the modified Bessel function. Comparing (30) with (11) and (18), it is 
clear that ck( t ) / &  + c(x, 1 )  for both Simha's model and our model in the continuum 
limit E +O, with both x = k~ and U = n E  fixed. The moments of this model are given 
simply by 

M , ( t ) s  I," xic(x, 1 )  dx = ui  e-'('-')'('+') (32) 

which corresponds to the leading terms of the moments for the discrete case (23). 
This continuum model, in which the homogeneity A of a(x)  is equal to zero, is at 

[ I l l ,  a finite fraction of the mass of the system breaks up to particles of infinitesimal 
size, and the apparent mass of the system is not conserved. Thus, the models (7) and 
(12) are discrete analogues of a continuum model at the boundary of this transition. 

the ho:de:!iae of the ':h-'!e:ixg' [I61 or 'disi"tegra!ion' [!3j ::znsi!ion. Whex ?.<O 

6. Conclusions 

We have presented an explicit solution to a discrete model of fragmentation, which is 
at the borderline of the shattering transition. This model differs from Simha's only in 
that the rate of breakup, a,, rather than being constant for k > I, is assumed to be 
( k - l ) / ( k + l ) ,  While this a, was chosen so that an explicit solution can be found, it 
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is not physically unreasonable, as interactions between particles may be expected to 
decrease the breakup rate for small k. Mathematically, our a, analytically connects 
the necessary a1 = 0 with a constant ak for large k Our solution was verified using 
Bernoulli moments, and this method may be useful for other models of fragmentation 
as well. 
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Appendix 1. Proof of the equivalence of (17) and (18) 

Clearly, from (18), the H!? satisfy the recurrence relation 

(Al. l )  

To verify that (17) is equivalent to (18), we show that (17) also implies this recurrence 
relation: 

= H$' 

where we have used 
(A1.2) 

and the identity 

(A1.4) 

which can be proven using a generating function. The equivalence of (17) and (18) 
may also be proven by showing that each gives (22) for the Bernoulli moments. 

Explicitly, for i = 0, 1 and 2, this identity reads 

( A I S )  

(A1.6) 
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Appendix 2. Derivation of (27) 

With a, and bilk given by (12), ( I )  becomes 
m 

C k + 2  1 A. dck k-1 
dt  k + l  j - k f l  J +  1 
_- _ _  - 

Multiplying this by (f) and summing over i, we find: 
m 

ca c. j - l  =-: (.)-ck+2 k k - l  
*-; i k + l  j = i + l J f l  -1 k = i  (!) 1 

i - l  - - -- R, 
i + l "  

where in the second line we used the identity [181 

f? ( ! )= ( .J  k = i  1 ). 

(A2.1) 
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